N-Body
Ce comparatif de performances calcule une simulation sur N corps des planètes Joviennes . Il est répété dix fois.
Resultats
La durée de l'éxécution est la durée utilisateur ajoutée à celle du système, comme renvoyée par la commande bash "time".
|
Python
|
Perl
|
Gambas
|
Temps d’exécution
|
22.4 s
|
33.3 s
|
20.8 s
|
Par rapport à Python
|
100 %
|
144 %
|
93 %
|
Par rapport Perl
|
69 %
|
100 %
|
65 %
|
Par rapport Gambas
|
107 %
|
155 %
|
100 %
|
Code source Python
#!/usr/bin/python
# The Computer Language Benchmarks Game
# http://shootout.alioth.debian.org/
#
# originally by Kevin Carson
# modified by Tupteq, Fredrik Johansson, and Daniel Nanz
# modified by Maciej Fijalkowski
# 2to3
import sys
def combinations(l):
result = []
for x in range(len(l) - 1):
ls = l[x+1:]
for y in ls:
result.append((l[x],y))
return result
PI = 3.14159265358979323
SOLAR_MASS = 4 * PI * PI
DAYS_PER_YEAR = 365.24
BODIES = {
'sun': ([0.0, 0.0, 0.0], [0.0, 0.0, 0.0], SOLAR_MASS),
'jupiter': ([4.84143144246472090e+00,
-1.16032004402742839e+00,
-1.03622044471123109e-01],
[1.66007664274403694e-03 * DAYS_PER_YEAR,
7.69901118419740425e-03 * DAYS_PER_YEAR,
-6.90460016972063023e-05 * DAYS_PER_YEAR],
9.54791938424326609e-04 * SOLAR_MASS),
'saturn': ([8.34336671824457987e+00,
4.12479856412430479e+00,
-4.03523417114321381e-01],
[-2.76742510726862411e-03 * DAYS_PER_YEAR,
4.99852801234917238e-03 * DAYS_PER_YEAR,
2.30417297573763929e-05 * DAYS_PER_YEAR],
2.85885980666130812e-04 * SOLAR_MASS),
'uranus': ([1.28943695621391310e+01,
-1.51111514016986312e+01,
-2.23307578892655734e-01],
[2.96460137564761618e-03 * DAYS_PER_YEAR,
2.37847173959480950e-03 * DAYS_PER_YEAR,
-2.96589568540237556e-05 * DAYS_PER_YEAR],
4.36624404335156298e-05 * SOLAR_MASS),
'neptune': ([1.53796971148509165e+01,
-2.59193146099879641e+01,
1.79258772950371181e-01],
[2.68067772490389322e-03 * DAYS_PER_YEAR,
1.62824170038242295e-03 * DAYS_PER_YEAR,
-9.51592254519715870e-05 * DAYS_PER_YEAR],
5.15138902046611451e-05 * SOLAR_MASS) }
SYSTEM = list(BODIES.values())
PAIRS = combinations(SYSTEM)
def advance(dt, bodies=SYSTEM, pairs=PAIRS):
for (([x1, y1, z1], v1, m1),
([x2, y2, z2], v2, m2)) in pairs:
dx = x1 - x2
dy = y1 - y2
dz = z1 - z2
mag = dt * ((dx * dx + dy * dy + dz * dz) ** (-1.5))
b1m = m1 * mag
b2m = m2 * mag
v1[0] -= dx * b2m
v1[1] -= dy * b2m
v1[2] -= dz * b2m
v2[0] += dx * b1m
v2[1] += dy * b1m
v2[2] += dz * b1m
for (r, [vx, vy, vz], m) in bodies:
r[0] += dt * vx
r[1] += dt * vy
r[2] += dt * vz
def report_energy(bodies=SYSTEM, pairs=PAIRS, e=0.0):
for (((x1, y1, z1), v1, m1),
((x2, y2, z2), v2, m2)) in pairs:
dx = x1 - x2
dy = y1 - y2
dz = z1 - z2
e -= (m1 * m2) / ((dx * dx + dy * dy + dz * dz) ** 0.5)
for (r, [vx, vy, vz], m) in bodies:
e += m * (vx * vx + vy * vy + vz * vz) / 2.
print("%.9f" % e)
def offset_momentum(ref, bodies=SYSTEM, px=0.0, py=0.0, pz=0.0):
for (r, [vx, vy, vz], m) in bodies:
px -= vx * m
py -= vy * m
pz -= vz * m
(r, v, m) = ref
v[0] = px / m
v[1] = py / m
v[2] = pz / m
def main():
offset_momentum(BODIES['sun'])
for t in range(10):
report_energy()
for n in range(100000):
advance(0.01)
report_energy()
if __name__ == '__main__':
main()
Code source Perl
#!/usr/bin/perl -w
# The Computer Language Shootout
# http://shootout.alioth.debian.org/
#
# contributed by Christoph Bauer
# converted into Perl by Márton Papp
# fixed and cleaned up by Danny Sauer
# optimized by Jesse Millikan
use constant PI => 3.141592653589793;
use constant SOLAR_MASS => (4 * PI * PI);
use constant DAYS_PER_YEAR => 365.24;
# Globales pour tableaux ... et bien.
# Pratiquement toute itération est une gamme, je conserve donc le dernier indice plutôt qu'un compte.
my (@xs, @ys, @zs, @vxs, @vys, @vzs, @mass, $last);
sub advance($)
{
my ($dt) = @_;
my ($mm, $mm2, $j, $dx, $dy, $dz, $distance, $mag);
# C'est plus rapide dans la boucle externe ...
for (0..$last) {
# Mais pas dans la boucle interne. Bizarre.
for ($j = $_ + 1; $j < $last + 1; $j++) {
$dx = $xs[$_] - $xs[$j];
$dy = $ys[$_] - $ys[$j];
$dz = $zs[$_] - $zs[$j];
$distance = sqrt($dx * $dx + $dy * $dy + $dz * $dz);
$mag = $dt / ($distance * $distance * $distance);
$mm = $mass[$_] * $mag;
$mm2 = $mass[$j] * $mag;
$vxs[$_] -= $dx * $mm2;
$vxs[$j] += $dx * $mm;
$vys[$_] -= $dy * $mm2;
$vys[$j] += $dy * $mm;
$vzs[$_] -= $dz * $mm2;
$vzs[$j] += $dz * $mm;
}
# On en a fini avec la planète $_ à cet endroit
# On pourrait le faire dans une boucle externe, mais c'est plus lent
$xs[$_] += $dt * $vxs[$_];
$ys[$_] += $dt * $vys[$_];
$zs[$_] += $dt * $vzs[$_];
}
}
sub energy
{
my ($e, $i, $dx, $dy, $dz, $distance);
$e = 0.0;
for $i (0..$last) {
$e += 0.5 * $mass[$i] *
($vxs[$i] * $vxs[$i] + $vys[$i] * $vys[$i] + $vzs[$i] * $vzs[$i]);
for ($i + 1..$last) {
$dx = $xs[$i] - $xs[$_];
$dy = $ys[$i] - $ys[$_];
$dz = $zs[$i] - $zs[$_];
$distance = sqrt($dx * $dx + $dy * $dy + $dz * $dz);
$e -= ($mass[$i] * $mass[$_]) / $distance;
}
}
return $e;
}
sub offset_momentum
{
my ($px, $py, $pz) = (0.0, 0.0, 0.0);
for (0..$last) {
$px += $vxs[$_] * $mass[$_];
$py += $vys[$_] * $mass[$_];
$pz += $vzs[$_] * $mass[$_];
}
$vxs[0] = - $px / SOLAR_MASS;
$vys[0] = - $py / SOLAR_MASS;
$vzs[0] = - $pz / SOLAR_MASS;
}
# @ns = ( sun, jupiter, saturn, uranus, neptune )
@xs = (0, 4.84143144246472090e+00, 8.34336671824457987e+00, 1.28943695621391310e+01, 1.53796971148509165e+01);
@ys = (0, -1.16032004402742839e+00, 4.12479856412430479e+00, -1.51111514016986312e+01, -2.59193146099879641e+01);
@zs = (0, -1.03622044471123109e-01, -4.03523417114321381e-01, -2.23307578892655734e-01, 1.79258772950371181e-01);
@vxs = map {$_ * DAYS_PER_YEAR}
(0, 1.66007664274403694e-03, -2.76742510726862411e-03, 2.96460137564761618e-03, 2.68067772490389322e-03);
@vys = map {$_ * DAYS_PER_YEAR}
(0, 7.69901118419740425e-03, 4.99852801234917238e-03, 2.37847173959480950e-03, 1.62824170038242295e-03);
@vzs = map {$_ * DAYS_PER_YEAR}
(0, -6.90460016972063023e-05, 2.30417297573763929e-05, -2.96589568540237556e-05, -9.51592254519715870e-05);
@mass = map {$_ * SOLAR_MASS}
(1, 9.54791938424326609e-04, 2.85885980666130812e-04, 4.36624404335156298e-05, 5.15138902046611451e-05);
$last = @xs - 1;
offset_momentum();
for (1..10)
{
printf ("%.9f\n", energy());
# En fait, ça ne consomme pas N*4 octets de mémoire
for (1..100000){
advance(0.01);
}
}
printf ("%.9f\n", energy());
Code source Gambas
#!/usr/bin/env gbs3
Class Body
Static Private SOLAR_MASS As Float = 4 * Pi * Pi
Private Const DAYS_PER_YEAR As Float = 365.24
Public X As Float
Public Y As Float
Public Z As Float
Public VX As Float
Public VY As Float
Public VZ As Float
Public Mass As Float
Static Public Sub Jupiter() As Body
Dim P As New Body
p.x = 4.84143144246472090e+00
p.y = -1.16032004402742839e+00
p.z = -1.03622044471123109e-01
p.vx = 1.66007664274403694e-03 * DAYS_PER_YEAR
p.vy = 7.69901118419740425e-03 * DAYS_PER_YEAR
p.vz = -6.90460016972063023e-05 * DAYS_PER_YEAR
p.mass = 9.54791938424326609e-04 * SOLAR_MASS
return p
End
Static Public Sub Saturn() As Body
Dim P As New Body
p.x = 8.34336671824457987e+00
p.y = 4.12479856412430479e+00
p.z = -4.03523417114321381e-01
p.vx = -2.76742510726862411e-03 * DAYS_PER_YEAR
p.vy = 4.99852801234917238e-03 * DAYS_PER_YEAR
p.vz = 2.30417297573763929e-05 * DAYS_PER_YEAR
p.mass = 2.85885980666130812e-04 * SOLAR_MASS
return p
End
Static Public Sub Uranus() As Body
Dim P As New Body
p.x = 1.28943695621391310e+01
p.y = -1.51111514016986312e+01
p.z = -2.23307578892655734e-01
p.vx = 2.96460137564761618e-03 * DAYS_PER_YEAR
p.vy = 2.37847173959480950e-03 * DAYS_PER_YEAR
p.vz = -2.96589568540237556e-05 * DAYS_PER_YEAR
p.mass = 4.36624404335156298e-05 * SOLAR_MASS
return p
End
Static Public Sub Neptune() As Body
Dim P As New Body
p.x = 1.53796971148509165e+01
p.y = -2.59193146099879641e+01
p.z = 1.79258772950371181e-01
p.vx = 2.68067772490389322e-03 * DAYS_PER_YEAR
p.vy = 1.62824170038242295e-03 * DAYS_PER_YEAR
p.vz = -9.51592254519715870e-05 * DAYS_PER_YEAR
p.mass = 5.15138902046611451e-05 * SOLAR_MASS
return p
End
Static Public Sub Sun() As Body
Dim P As New Body
p.mass = SOLAR_MASS
return p
End
Public Sub OffsetMomentum(px As Float, py As Float, pz As Float) As Body
vx = -px / SOLAR_MASS
vy = -py / SOLAR_MASS
vz = -pz / SOLAR_MASS
Return Me
End
End Class
Class NBodySystem
Private Bodies As Body[]
Public Sub _new()
Dim PX, PY, PZ As Float
Dim I As Integer
Bodies = [ Body.Sun(), Body.Jupiter(), Body.Saturn(), Body.Uranus(), Body.Neptune() ]
For I = 0 To Bodies.Max
PX += Bodies[I].vx * Bodies[I].mass
PY += Bodies[I].vy * Bodies[I].mass
PZ += Bodies[I].vz * Bodies[I].mass
Next
Bodies[0].offsetMomentum(PX, PY, PZ)
End
Public Sub Advance(dt As Float)
Dim I, J As Integer
Dim iBody, jBody As Body
Dim dx, dy, dz As Float
Dim dSquared, fMag As Float
Dim iMass, jMass, iMag, jMag As Float
For I = 0 To Bodies.Max
iBody = Bodies[I]
iMass = iBody.mass
For J = I + 1 To Bodies.Max
jBody = Bodies[J]
jMass = jBody.mass
dx = iBody.x - jBody.x
dy = iBody.y - jBody.y
dz = iBody.z - jBody.z
dSquared = dx * dx + dy * dy + dz * dz
fMag = dt / (dSquared * Sqr(dSquared))
iMag = iMass * fMag
jMag = jMass * fMag
iBody.vx -= dx * jMag
iBody.vy -= dy * jMag
iBody.vz -= dz * jMag
jBody.vx += dx * iMag
jBody.vy += dy * iMag
jBody.vz += dz * iMag
Next
Next
For Each iBody in Bodies
iBody.x += dt * iBody.vx
iBody.y += dt * iBody.vy
iBody.z += dt * iBody.vz
Next
End
Public Sub Energy() As Float
Dim dx, dy, dz, distance, E As Float
Dim iBody, jBody As Body
Dim I, J As Integer
For I = 0 To Bodies.Max
iBody = bodies[i]
E += 0.5 * iBody.mass * (iBody.vx * iBody.vx + iBody.vy * iBody.vy + iBody.vz * iBody.vz)
For J = I + 1 To Bodies.Max
jBody = Bodies[J]
dx = iBody.x - jBody.x
dy = iBody.y - jBody.y
dz = iBody.z - jBody.z
distance = Sqr(dx*dx + dy*dy + dz*dz)
E -= (iBody.mass * jBody.mass) / distance
Next
Next
return E
End
End Class
Dim S As New NBodySystem
Dim I, N As Integer
For N = 1 To 10
Print S.Energy()
For I = 1 To 100000
S.Advance(0.01)
Next
Next
Print S.Energy()