Gambas Documentation
Application Repository
Code Snippets
Compilation & Installation
Components
Controls pictures
Deprecated components
Developer Documentation
Development Environment Documentation
Documents
About The Best Formula In The World
Architecture details
Benchmarks
Mandelbrot
N-Body
Primes
Books
By Reference Argument Passing
Compatibility between versions
Creating And Using Libraries
Database Datatype Mapping
Database Request Quoting
Date & time management
Dates and calendars
DBus and Gambas
Differences Between Shell And Exec
Differences From Visual Basic
Distributions & Operating Systems
Drag & Drop
DrawingArea Internal Behaviour
External functions datatype mapping
Frequently Asked Questions
Gambas Farm Server Protocol
Gambas Mailing List Netiquette
Gambas Markdown Syntax
Gambas Naming Conventions
Gambas Object Model
Gambas Scripting
Gambas Server Pages
Gambas Unit Testing
Gambas Wiki Markup Syntax
Getting Started With Gambas
Hall Of Fame
Housekeeping, cleaning up
Image Management In Gambas
Including Help Comments in Source Code
Interpreter limits
Introduction
Just In Time Compiler
Just In Time Compiler (old version)
License
Localisation and Internationalization
Mailing Lists & Forums
Naming Conventions
Network Programming
ODBC Component Documentation
PCRE Pattern Syntax
Porting from Gambas 2 to Gambas 3
Previous News
Project Directory Structure
Release Notes
Reporting a problem, a bug or a crash
Rich Text Syntax
Screenshots
Text highlighting definition file syntax
The Program has stopped unexpectedly by raising signal #11
Variable Naming Convention
WebPage Syntax
Web site home page
What Is Gambas?
Window & Form Management
Window Activation & Deactivation
Window Life Cycle
XML APIs
Error Messages
Gambas Playground
How To's
Language Index
Language Overviews
Last Changes
Lexicon
README
Search the wiki
To Do
Topics
Tutorials
Wiki License
Wiki Manual

N-Body

This benchmark performs an N-body simulation of the Jovian planets. It is repeated ten times.

Results

The execution time is the user time added to the system time, as returned by the bash "time" command.

Python Perl Gambas Gambas + JIT
Execution time (s) 22.4 33.3 20.8 3.07
vs. Python 1 1.44 0.93 0.14
vs. Perl 0.69 1 0.65 0.09
vs. Gambas 1.07 1.55 1 0.62
vs. Gambas + JIT 7.30 10.85 6.78 1

Python source code

#!/usr/bin/python

# The Computer Language Benchmarks Game
# http://shootout.alioth.debian.org/
#
# originally by Kevin Carson
# modified by Tupteq, Fredrik Johansson, and Daniel Nanz
# modified by Maciej Fijalkowski
# 2to3

import sys

def combinations(l):
    result = []
    for x in range(len(l) - 1):
        ls = l[x+1:]
        for y in ls:
            result.append((l[x],y))
    return result

PI = 3.14159265358979323
SOLAR_MASS = 4 * PI * PI
DAYS_PER_YEAR = 365.24

BODIES = {
    'sun': ([0.0, 0.0, 0.0], [0.0, 0.0, 0.0], SOLAR_MASS),

    'jupiter': ([4.84143144246472090e+00,
                 -1.16032004402742839e+00,
                 -1.03622044471123109e-01],
                [1.66007664274403694e-03 * DAYS_PER_YEAR,
                 7.69901118419740425e-03 * DAYS_PER_YEAR,
                 -6.90460016972063023e-05 * DAYS_PER_YEAR],
                9.54791938424326609e-04 * SOLAR_MASS),

    'saturn': ([8.34336671824457987e+00,
                4.12479856412430479e+00,
                -4.03523417114321381e-01],
               [-2.76742510726862411e-03 * DAYS_PER_YEAR,
                4.99852801234917238e-03 * DAYS_PER_YEAR,
                2.30417297573763929e-05 * DAYS_PER_YEAR],
               2.85885980666130812e-04 * SOLAR_MASS),

    'uranus': ([1.28943695621391310e+01,
                -1.51111514016986312e+01,
                -2.23307578892655734e-01],
               [2.96460137564761618e-03 * DAYS_PER_YEAR,
                2.37847173959480950e-03 * DAYS_PER_YEAR,
                -2.96589568540237556e-05 * DAYS_PER_YEAR],
               4.36624404335156298e-05 * SOLAR_MASS),

    'neptune': ([1.53796971148509165e+01,
                 -2.59193146099879641e+01,
                 1.79258772950371181e-01],
                [2.68067772490389322e-03 * DAYS_PER_YEAR,
                 1.62824170038242295e-03 * DAYS_PER_YEAR,
                 -9.51592254519715870e-05 * DAYS_PER_YEAR],
                5.15138902046611451e-05 * SOLAR_MASS) }


SYSTEM = list(BODIES.values())
PAIRS = combinations(SYSTEM)


def advance(dt, bodies=SYSTEM, pairs=PAIRS):

    for (([x1, y1, z1], v1, m1),
	  ([x2, y2, z2], v2, m2)) in pairs:
	dx = x1 - x2
	dy = y1 - y2
	dz = z1 - z2
	mag = dt * ((dx * dx + dy * dy + dz * dz) ** (-1.5))
	b1m = m1 * mag
	b2m = m2 * mag
	v1[0] -= dx * b2m
	v1[1] -= dy * b2m
	v1[2] -= dz * b2m
	v2[0] += dx * b1m
	v2[1] += dy * b1m
	v2[2] += dz * b1m
    for (r, [vx, vy, vz], m) in bodies:
	r[0] += dt * vx
	r[1] += dt * vy
	r[2] += dt * vz


def report_energy(bodies=SYSTEM, pairs=PAIRS, e=0.0):

    for (((x1, y1, z1), v1, m1),
         ((x2, y2, z2), v2, m2)) in pairs:
        dx = x1 - x2
        dy = y1 - y2
        dz = z1 - z2
        e -= (m1 * m2) / ((dx * dx + dy * dy + dz * dz) ** 0.5)
    for (r, [vx, vy, vz], m) in bodies:
        e += m * (vx * vx + vy * vy + vz * vz) / 2.
    print("%.9f" % e)

def offset_momentum(ref, bodies=SYSTEM, px=0.0, py=0.0, pz=0.0):

    for (r, [vx, vy, vz], m) in bodies:
        px -= vx * m
        py -= vy * m
        pz -= vz * m
    (r, v, m) = ref
    v[0] = px / m
    v[1] = py / m
    v[2] = pz / m

def main():
    offset_momentum(BODIES['sun'])
    for t in range(10):
	report_energy()
	for n in range(100000):
	    advance(0.01)

    report_energy()

if __name__ == '__main__':
    main()

Perl source code

#!/usr/bin/perl -w

# The Computer Language Shootout
# http://shootout.alioth.debian.org/
#
# contributed by Christoph Bauer
# converted into Perl by Márton Papp
# fixed and cleaned up by Danny Sauer
# optimized by Jesse Millikan

use constant PI            => 3.141592653589793;
use constant SOLAR_MASS    => (4 * PI * PI);
use constant DAYS_PER_YEAR => 365.24;

#  Globals for arrays... Oh well.
#  Almost every iteration is a range, so I keep the last index rather than a count.
my (@xs, @ys, @zs, @vxs, @vys, @vzs, @mass, $last);

sub advance($)
{
  my ($dt) = @_;
  my ($mm, $mm2, $j, $dx, $dy, $dz, $distance, $mag);

#  This is faster in the outer loop...
  for (0..$last) {
#  But not in the inner loop. Strange.
    for ($j = $_ + 1; $j < $last + 1; $j++) {
      $dx = $xs[$_] - $xs[$j];
      $dy = $ys[$_] - $ys[$j];
      $dz = $zs[$_] - $zs[$j];
      $distance = sqrt($dx * $dx + $dy * $dy + $dz * $dz);
      $mag = $dt / ($distance * $distance * $distance);
      $mm = $mass[$_] * $mag;
      $mm2 = $mass[$j] * $mag;
      $vxs[$_] -= $dx * $mm2;
      $vxs[$j] += $dx * $mm;
      $vys[$_] -= $dy * $mm2;
      $vys[$j] += $dy * $mm;
      $vzs[$_] -= $dz * $mm2;
      $vzs[$j] += $dz * $mm;
    }

# We're done with planet $_ at this point
# This could be done in a seperate loop, but it's slower
    $xs[$_] += $dt * $vxs[$_];
    $ys[$_] += $dt * $vys[$_];
    $zs[$_] += $dt * $vzs[$_];
  }
}

sub energy
{
  my ($e, $i, $dx, $dy, $dz, $distance);

  $e = 0.0;
  for $i (0..$last) {
    $e += 0.5 * $mass[$i] *
          ($vxs[$i] * $vxs[$i] + $vys[$i] * $vys[$i] + $vzs[$i] * $vzs[$i]);
    for ($i + 1..$last) {
      $dx = $xs[$i] - $xs[$_];
      $dy = $ys[$i] - $ys[$_];
      $dz = $zs[$i] - $zs[$_];
      $distance = sqrt($dx * $dx + $dy * $dy + $dz * $dz);
      $e -= ($mass[$i] * $mass[$_]) / $distance;
    }
  }
  return $e;
}

sub offset_momentum
{
  my ($px, $py, $pz) = (0.0, 0.0, 0.0);

  for (0..$last) {
    $px += $vxs[$_] * $mass[$_];
    $py += $vys[$_] * $mass[$_];
    $pz += $vzs[$_] * $mass[$_];
  }
  $vxs[0] = - $px / SOLAR_MASS;
  $vys[0] = - $py / SOLAR_MASS;
  $vzs[0] = - $pz / SOLAR_MASS;
}

# @ns = ( sun, jupiter, saturn, uranus, neptune )
@xs = (0, 4.84143144246472090e+00, 8.34336671824457987e+00, 1.28943695621391310e+01, 1.53796971148509165e+01);
@ys = (0, -1.16032004402742839e+00, 4.12479856412430479e+00, -1.51111514016986312e+01, -2.59193146099879641e+01);
@zs = (0, -1.03622044471123109e-01, -4.03523417114321381e-01, -2.23307578892655734e-01, 1.79258772950371181e-01);
@vxs = map {$_ * DAYS_PER_YEAR}
  (0, 1.66007664274403694e-03, -2.76742510726862411e-03, 2.96460137564761618e-03, 2.68067772490389322e-03);
@vys = map {$_ * DAYS_PER_YEAR}
  (0, 7.69901118419740425e-03, 4.99852801234917238e-03, 2.37847173959480950e-03, 1.62824170038242295e-03);
@vzs = map {$_ * DAYS_PER_YEAR}
  (0, -6.90460016972063023e-05, 2.30417297573763929e-05, -2.96589568540237556e-05, -9.51592254519715870e-05);
@mass = map {$_ * SOLAR_MASS}
  (1, 9.54791938424326609e-04, 2.85885980666130812e-04, 4.36624404335156298e-05, 5.15138902046611451e-05);

$last = @xs - 1;

offset_momentum();

for (1..10)
{
  printf ("%.9f\n", energy());

  # This does not, in fact, consume N*4 bytes of memory
  for (1..100000){
    advance(0.01);
  }

}

printf ("%.9f\n", energy());

Gambas source code

#!/usr/bin/env gbs3

Class Body

  Static Private SOLAR_MASS As Float = 4 * Pi * Pi
  Private Const DAYS_PER_YEAR As Float = 365.24

  Public X As Float
  Public Y As Float
  Public Z As Float
  Public VX As Float
  Public VY As Float
  Public VZ As Float
  Public Mass As Float

  Static Public Sub Jupiter() As Body

    Dim P As New Body
    p.x = 4.84143144246472090e+00
    p.y = -1.16032004402742839e+00
    p.z = -1.03622044471123109e-01
    p.vx = 1.66007664274403694e-03 * DAYS_PER_YEAR
    p.vy = 7.69901118419740425e-03 * DAYS_PER_YEAR
    p.vz = -6.90460016972063023e-05 * DAYS_PER_YEAR
    p.mass = 9.54791938424326609e-04 * SOLAR_MASS
    return p

  End

  Static Public Sub Saturn() As Body

    Dim P As New Body
    p.x = 8.34336671824457987e+00
    p.y = 4.12479856412430479e+00
    p.z = -4.03523417114321381e-01
    p.vx = -2.76742510726862411e-03 * DAYS_PER_YEAR
    p.vy = 4.99852801234917238e-03 * DAYS_PER_YEAR
    p.vz = 2.30417297573763929e-05 * DAYS_PER_YEAR
    p.mass = 2.85885980666130812e-04 * SOLAR_MASS
    return p

  End

  Static Public Sub Uranus() As Body

    Dim P As New Body

    p.x = 1.28943695621391310e+01
    p.y = -1.51111514016986312e+01
    p.z = -2.23307578892655734e-01
    p.vx = 2.96460137564761618e-03 * DAYS_PER_YEAR
    p.vy = 2.37847173959480950e-03 * DAYS_PER_YEAR
    p.vz = -2.96589568540237556e-05 * DAYS_PER_YEAR
    p.mass = 4.36624404335156298e-05 * SOLAR_MASS
    return p

  End

  Static Public Sub Neptune() As Body

    Dim P As New Body

    p.x = 1.53796971148509165e+01
    p.y = -2.59193146099879641e+01
    p.z = 1.79258772950371181e-01
    p.vx = 2.68067772490389322e-03 * DAYS_PER_YEAR
    p.vy = 1.62824170038242295e-03 * DAYS_PER_YEAR
    p.vz = -9.51592254519715870e-05 * DAYS_PER_YEAR
    p.mass = 5.15138902046611451e-05 * SOLAR_MASS
    return p

  End

  Static Public Sub Sun() As Body

    Dim P As New Body

    p.mass = SOLAR_MASS
    return p

  End

  Public Sub OffsetMomentum(px As Float, py As Float, pz As Float) As Body

    vx = -px / SOLAR_MASS
    vy = -py / SOLAR_MASS
    vz = -pz / SOLAR_MASS

    Return Me

  End

End Class


Class NBodySystem

  Private Bodies As Body[]

  Public Sub _new()

    Dim PX, PY, PZ As Float
    Dim I As Integer

    Bodies = [ Body.Sun(), Body.Jupiter(), Body.Saturn(), Body.Uranus(), Body.Neptune() ]

    For I = 0 To Bodies.Max
      PX += Bodies[I].vx * Bodies[I].mass
      PY += Bodies[I].vy * Bodies[I].mass
      PZ += Bodies[I].vz * Bodies[I].mass
    Next

    Bodies[0].offsetMomentum(PX, PY, PZ)

  End

  Public Sub Advance(dt As Float)

    Dim I, J As Integer
    Dim iBody, jBody As Body
    Dim dx, dy, dz As Float
    Dim dSquared, fMag As Float
    Dim iMass, jMass, iMag, jMag As Float

    For I = 0 To Bodies.Max
      iBody = Bodies[I]
      iMass = iBody.mass

      For J = I + 1 To Bodies.Max
        jBody = Bodies[J]
	jMass = jBody.mass

        dx = iBody.x - jBody.x
        dy = iBody.y - jBody.y
        dz = iBody.z - jBody.z

        dSquared = dx * dx + dy * dy + dz * dz
        fMag = dt / (dSquared * Sqr(dSquared))
	iMag = iMass * fMag
	jMag = jMass * fMag

        iBody.vx -= dx * jMag
	iBody.vy -= dy * jMag
	iBody.vz -= dz * jMag

	jBody.vx += dx * iMag
	jBody.vy += dy * iMag
	jBody.vz += dz * iMag
      Next
    Next

    For Each iBody in Bodies
      iBody.x += dt * iBody.vx
      iBody.y += dt * iBody.vy
      iBody.z += dt * iBody.vz
    Next

  End

  Public Sub Energy() As Float

    Dim dx, dy, dz, distance, E As Float
    Dim iBody, jBody As Body
    Dim I, J As Integer

    For I = 0 To Bodies.Max

      iBody = bodies[i]
      E += 0.5 * iBody.mass * (iBody.vx * iBody.vx + iBody.vy * iBody.vy + iBody.vz * iBody.vz)

      For J = I + 1 To Bodies.Max

	jBody = Bodies[J]
        dx = iBody.x - jBody.x
        dy = iBody.y - jBody.y
        dz = iBody.z - jBody.z

        distance = Sqr(dx*dx + dy*dy + dz*dz)
        E -= (iBody.mass * jBody.mass) / distance

      Next
    Next

    return E

  End

End Class


Dim S As New NBodySystem
Dim I, N As Integer

For N = 1 To 10

  Print S.Energy()

  For I = 1 To 100000
    S.Advance(0.01)
  Next

Next

Print S.Energy()